

MOTOCAP

This MotoCAP safety rating applies to:

Brand:	Dainese
Model:	X-Moto
Туре:	Glove - Leather/Textile
Date purchased:	8 February 2021
Sizes tested:	XL
Test glove gender:	Male
Style:	All Purpose
RRP:	\$139.95

Test Results Summary:

	Rating	Score
MotoCAP Protection Rating	*	1.7
Abrasion	4/10	2.26
Seam strength	1/10	2.4
Impact	2/10	5.0
Water resistance	N/A	N/A

These gloves are fitted with impact protection for the knuckles only. There is no impact protection for the palms. Mesh fabric in the fingers, wrist and thumb, provide continuous airflow within the glove.

Gloves - Crash Impact Risk Zones

This diagram is a pictorial representation of the crash impact risk Zones.

Abrasion Resistance

The gloves were tested for abrasion resistance in accordance with MotoCAP test protocols. The diagram below is a visual indication of the likely abrasion performance of the materials in each Zone calculated from the data in the table below. The colour coding is based on the worst performing material in each zone.

		Abrasion Resistance Performance				
				Abrasion	rating	4/10
				Abrasion		2.26
Determining Criteria	Area	Good	Acceptable	Marginal	Poor	
High abrasion risk	Zone 1 & 2	> 4.0	2.7 - 4.0	1.2 - 2.6	< 1.2	
Medium abrasion risk	Zone 3	2.5	1.8 - 2.5	0.8 - 1.7	< 0.8	

Individual Abrasion Resistance Results: - The table below shows the test results for time to abrade through all layers of the materials. Calculated for each sample by Zone, type and area coverage of each material as a proportion of that Zone. Abrasion times are capped at a maximum of 10.00s.

Abrasion time for each test (seconds)

Zones 1	Coverage (%)	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Average	
Material A	40%	10.00	10.00	10.00	10.00	10.00	10.00	10.00	G
Material B	60%	1.09	4.48	0.05	2.69	0.63	0.90	1.64	Μ
Zone 2	Coverage (%)	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Average	
Material C	20%	6.04	6.17	2.64	7.39	4.62	5.72	5.43	G
Material B	80%	1.09	4.48	0.05	2.69	0.63	0.90	1.64	Μ
Zone 3	Coverage (%)	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Average	
Material D	30%	0.00	3.03	0.00	3.08	3.71	3.18	2.17	Α
Material E	70%	1.68	1.37	1.12	0.25	1.08	2.57	1.34	Μ

Details of materials used in glove - derived from manufacturer provided information

Material AHard-shell armour over leather shellMaterial BSuede leather shellMaterial CLeather patch over suede leather shellMaterial DMesh fabric shell, foam layer and fabric inner linerMaterial ELeather shell, foam layer and fabric inner liner

Seam Tensile Strength

The tensile strength of the gloves seams and glove restraint (the force required to drag off a properly fastened glove) were tested in accordance with MotoCAP test protocols. The diagram below illustrates the tensile strength and wrist restraint results in terms of the likely performance of the glove in a crash and is a pictorial representation of the data from the tables below.

Seam strength rating	1/10
Seam strength score	2.4

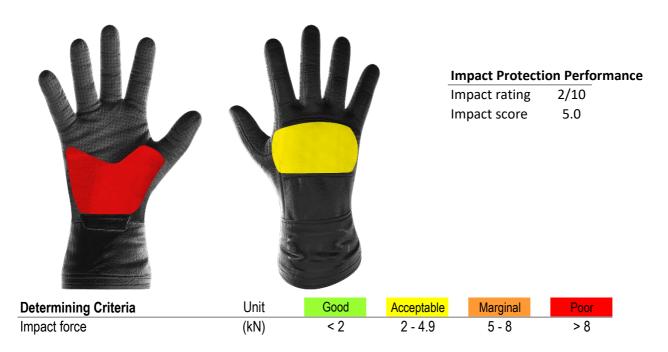
Determining Criteria	Unit	Good	Acceptable	Marginal	Poor
Seam tensile strength	(N/mm)	> 11	9 - 11	6 - 8.9	< 6
Glove restraint	(N)	> 200	100 - 200	50 - 99	<50

Individual Seam Strength Results: - The table below shows the seam tensile strength in newtons per millimeter (N/mm) for each seam tested by Zone and the average result for each Zone.

Seam tensile strength (N/mm)

Area	1	2	3	4	5	Average
Zones 1 & 2	7.52	9.12	6.43	5.47	7.18	7.14 M
Zone 3	16.00	6.39	8.96	11.52	7.18	10.01 A

Individual Glove Restraint Results: - The table below shows the force required to remove the restrained glove in newtons (N) for each of the five gloves tested and the average result.


Glove restraint (N)

Glove	1	2	3	4	5	Average
Wrist restraint	58.4	42.0	53.4	46.8	86.0	57.3 M

Impact Protection

The glove was tested for impact protection and coverage In accordance with MotoCAP test protocols. The diagram below is a visual indication of the likely performance of each impact protector calculated from the data in the table below. The colour coding is based on the worst performing score for average or maximum force for each impact zone. Areas shaded black are not considered in the impact protection ratings.

* Poor may also indicate that no impact protector is present in the glove

Impact Protector Results: - The table below shows the test results for each strike on each impact protector in kilonewtons (kN) and their area of coverage in percentage (%) within the Zone. Impact forces are capped at a maximum of 10.0kN.

Impact protector type	Knuckles	Palm
Average force (kN)	2.5 A	P
Maximum force (kN)	3.0 A	P
Coverage of zone 1 area	80%	0%

Individual test results: - The table below shows the test results for each strike on each impact protector in kilonewtons (kN) and the position of the strike. Impact forces are capped at a maximum of 10.0kN.

Impact protector type	Knuckles			Palm	No impact protector present
Strike number	1	2	3	1	2
Impact Protector 1	2.6	3.0	3.0		
Impact Protector 2	2.0	2.4	2.4		
Impact Protector 3	2.5	2.8	1.6		

Water spray and rain resistance

This glove has not been advertised as water resistant so has not been tested for water spray and rain resistance.

Assessment Details.

Brand
Model
Туре
Date purchased
Tested by
Report approved by
Garment test reference
Rating first published
Rating updated

Dainese X-Moto Glove - Leather/Textile 8 February 2021 AMCAF, Deakin University MotoCAP Chief Scientist G20L12 August 2021 18 August 2021